AI-Powered Suicidal Ideation Detection for Text Safety
AI & Automation

AI-Powered Suicidal Ideation Detection for Text Safety

Developed and fine-tuned an LLM to detect signs of suicidal ideation in text with >94% accuracy, reducing manual review effort by

Client: Mental Health & Wellness
AI DevelopmentAutomationMachine Learning
AI-Powered Suicidal Ideation Detection for Text Safety

Overview

We collaborated with a mental-health tech provider to automate the detection of self-harm content across user messages and posts, ensuring rapid intervention while preserving privacy.

The Challenge

The client needed a high-precision solution to flag suicidal ideation in large volumes of unstructured text, without generating excessive false positives that could overwhelm support teams.

Our Solution

- Curated and ethically annotated datasets reflecting diverse linguistic expressions of self-harm
- Fine-tuned a state-of-the-art LLM on this dataset for robust intent recognition
- Deployed the model via a scalable API integrated into the client’s moderation pipeline
- Implemented confidence thresholds and human-in-the-loop review for edge cases

Results

50 ms
Average inference time
80%
Manual review workload reduced
2%
False positives rate
94%
Detection accuracy

Our AI-first approach delivered a reliable, fast-acting safeguard against self-harm content, enabling the client to scale content moderation while maintaining high ethical standards

Project Gallery

AI-Powered Suicidal Ideation Detection for Text Safety - Gallery Image 1
AI-Powered Suicidal Ideation Detection for Text Safety - Gallery Image 2
AI-Powered Suicidal Ideation Detection for Text Safety - Gallery Image 3

Ready to Transform Your Digital Presence?

Let's create something exceptional together. Our team of experts is ready to help you achieve your digital goals.